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We present a detailed and up-to-date survey of the literature on parallel branch-and-bound algorithms. We synthesize 
previous work in this area and propose a new classification of parallel branch-and-bound algorithms. This classification 
is used to analyze the methods proposed in the literature. To facilitate our analysis, we give a new characterization of 
branch-and-bound algorithms, which consists of isolating the performed operations without specifying any particular 
order for their execution. 

Branch-and-bound (BB) methods are well-known 
algorithmic tools for solving NP-hard optimiza- 

tion problems. For many of these inherently difficult 
problems, only small instances can be solved in a 
reasonable amount of time on sequential computers. 
Consequently, the use of parallelism to speed up the 
execution of BB algorithms has emerged as a way to 
solve larger problem instances, and has attracted 
many researchers in recent years. One objective of 
this paper is to give a detailed survey of what has been 
achieved in this field. Another objective is to intro- 
duce the reader to many of the challenges associated 
with adapting BB algorithms for parallel architec- 
tures. In particular, we present several strategies to 
exploit parallelism and we show, by using examples 
taken from the literature, that the choice of a strategy 
is greatly influenced by the design of the parallel 
machine used, as well as by the characteristics of the 
problem. 

Surveys of parallel BB algorithms have been pre- 
sented by Roucairol (1989a), Pardalos and Li (1990), 
and Trienekens and de Bruin (1992), and can also be 
found in papers dedicated to the general area of par- 
allelism in combinatorial optimization and mathemat- 
ical programming (Kindervater and Lenstra 1985, 

1986, 1988, Ribeiro 1987, Roucairol 1989b, Pardalos, 
Phillips and Rosen 1992, Grama, Kumar and Pardalos 
1993, Eckstein 1994a). Many new developments, 
however, have appeared since and, consequently, are 
not covered in these surveys. The present paper at- 
tempts to fill this gap. It also differs significantly from 
previous work in several aspects. First, it gives a new 
presentation of BB algorithms which consists of iso- 
lating the operations performed without specifying 
any particular order for their execution. The useful- 
ness of this approach is shown by stating the conver- 
gence of exact BB methods under general conditions 
that hold for most sequential and parallel algorithms. 
Second, it proposes a new classification of parallel BB 
algorithms, which is used to characterize and analyze 
the methods proposed in the literature. Third, it is 
intended as a guide to the conceptual design of par- 
allel BB algorithms. Our aim here is to diffuse as much 
pertinent information as possible to encourage further 
new developments. In particular, when describing a 
reported algorithm, we aim to identify the original 
contributions, specify the problem that was solved 
and the architecture being used, and give a summary 
of significant results. 

Subject classifications: Programming, implementation on parallel architectures. Programming, integer, algorithms: survey. 
Area of review: COMPUTING. 
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The paper is organized as follows. Section 1 gives 
a presentation of BB algorithms, and introduces the 
related terminology used in the remainder of the text. 
Section 2 shows how parallelism can be exploited in 
BB algorithms, and characterizes many of the problems 
that one has to face when adapting these methods to 
parallel architectures. A detailed survey of the field, 
including a historical overview, is the subject of Sec- 
tion 3. Finally, the conclusion summarizes this work 
and proposes some research directions. 

1. BRANCH-AND-BOUND ALGORITHMS 

The characterization of BB algorithms has been stud- 
ied by many researchers (Bertier and Roy 1964, Agin 
1966, Lawler and Wood 1966, Balas 1968, Mitten 
1970, Geoffrion and Marsten 1972, Kohler and 
Steiglitz 1974, 1976, Rinnooy Kan 1976, Sekiguchi 
1981, Nau, Kumar and Kanal 1984, Ibaraki 1987, 
McKeown, Rayward-Smith and Turpin 1991), but 
most of the previous descriptions assume that the 
algorithms are executed in a sequential environment. 
In this section, we describe the operations involved in 
all BB algorithms without specifying their relative 
order of execution. Hence, our description can be 
shown to be valid for most BB algorithms executed in 
a parallel environment. 

1.1. Branch-and-Bound to Find One Optimal 
Solution 

BB may be seen as an implicit enumeration method 
for solving the optimization problem P: Z(P) = 

min,sft(x), where f is a real-valued function, and S 
is a subset of a real vector space V. We assume that 
P can be solved by enumerating a finite number of 
points (not necessarily known in advance) in S, and 
that it is an NP-hard problem, which implies that no 
polynomial (in the dimension of V) algorithm is 
known to solve it. We also assume that the problem 
is either infeasible (S = 0) or has a finite optimal value 
(Z(P) > -Xo). 

When the problem is not tractable, a 
divide-and-conquer approach may be used to solve it. 
It consists of decomposing the set of feasible solutions 
S into n subsets S1, ... , Sn, such that Ui=1 5 
One identifies SD = Un1 Si as the decomposed set, 
while its complement SE = S - U7 1 Si is called the 
excluded set. Let pD and pE denote the optimization 
problems associated with the decomposed and the 
excluded sets, respectively. We assume that the op- 
timal value of pD is not worse than the optimal value 
of PE, that is Z(PD) < Z(PE). When SE = 0 (we then 
assume Z(PE) = +oo), the decomposition is called a 

division of S. If the subsets are also mutually disjoint 
(si n sj = o, i ? j), the decomposition is called a 
partition of S. Let Pi denote the optimization problem 
associated with subset Si, and Z(Pi) its optimal value 
(i = 1, ... , n). We then have Z(P) = min1<iSn 

Z(Pi) (with the convention that an infeasible problem 
has an infinite optimal value). If subproblems 
P, ... , Pn are not solved directly, a similar decom- 
position, called a branching operation, may be ap- 
plied to each of them. Successive decompositions 
may be performed until all subproblems obtained are 
easy to solve (we will see shortly, however, that in 
most cases, it is not necessary to solve all subprob- 
lems). It is assumed that the whole process generates 
a finite number of subproblems, because P can be 
solved by enumerating a finite number of points in S. 

A subproblem Q obtained by performing branching 
operations need not be decomposed for one of two 
reasons: 

Elimination Rule 1: The subproblem has been solved, 
that is, it is either infeasible, or an optimal solution 
has been found. 

Elimination Rule 2: Another subproblem R is known 
to have an optimal value which is not worse than the 
optimal value of the given subproblem, that is, Z(R) 
6 Z(Q). 

At first sight, it seems that to apply the second 
elimination rule, one must know the optimal values of 
the subproblems. However, it is sufficient to know 
only a lower bound on the optimal value of Q and an 
upper bound on the optimal value of R. This is the 
role of the bounding operation. It associates with 
each subproblem Q a lower bound Z'(Q), and an 
upper bound ZU(Q). Usually, a finite upper bound for 
a given subproblem Q also corresponds to a feasible 
solution to that subproblem, and hence, to the original 
problem P. Thus, if a given subproblem Q has a lower 
bound greater or equal to a known upper bound on the 
optimal value of the problem, then it need not be 
decomposed. This version of the second elimination 
rule is called the lower bound test. Another version of 
this rule, the dominance test (Kohler and Steiglitz 
1974, Ibaraki 1977), compares directly two subprob- 
lems and, on the basis of problem-specific rules, de- 
termines if one has a better optimal value than the 
other (it is then said that it dominates the other). 
The dominance test is rarely used, while the lower 
bound test is universal in all BB algorithms. 

The BB algorithm thus consists of performing 
branching and bounding operations, as well as testing 
the elimination rules, and can be described as the 
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process of building a tree, called a BB tree. The root 
of this tree is the original problem, while the sons of 
a given node (subproblem) Q are the subproblems 
obtained by decomposition of Q. The leaves of the 
tree are the subproblems that one does not decom- 
pose, and we distinguish between leaves of type 1, 
solved subproblems, and leaves of type 2, subprob- 
lems not decomposed due to the application of the 
second elimination rule. To each BB tree, we also 
associate a special tree, called basic tree, which is 
obtained by performing the same operations, but 
without testing the second elimination rule. Thus, two 
algorithms that perform the same branching and 
bounding operations on all subproblems, though pos- 
sibly not in the same order, will have the same asso- 
ciated basic tree. 

While the BB tree is built, the subproblems may be 
in one of the following three states: generated, eval- 
uated, or examined. A subproblem is generated when 
it has been obtained from another subproblem by 
decomposition (initially, the original problem is the 
only generated subproblem). A generated subproblem 
is evaluated when a bounding operation has been 
applied to it, while it is examined if either a branching 
operation has been performed on it (in this case, we 
say it was decomposed), or the elimination rules have 
shown that it is not necessary to decompose it (in this 
case, we say it was eliminated). Let G denote the set 
of all generated subproblems, and define the corre- 
sponding partition: 

Goo = {QEG: Q is not evaluated 
and not examined}, 

Go, = {Q E G: Q is not evaluated and examined}, 

G10 = {Q E G: Q is evaluated and not examined}, 

G1 = {Q E G: Q is evaluated and examined}. 

1.2. Convergence of the Branch-and-Bound 
Algorithm 

When all generated subproblems have been exam- 
ined, the algorithm stops and the best upper bound of 
all evaluated subproblems is the optimal value of the 
problem. This claim may be proven, provided that 
one uses a bounding operation and elimination rules 
that satisfy the following Convergence Assumptions: 

1. A finite upper bound for any evaluated subproblem 
corresponds to a feasible solution to the original 
problem, i.e., the bound is obtained by evaluating 
f at a point of S. 

2. A generated subproblem Q is solved if it is 
evaluated, and Z'(Q) = ZU(Q) (when the 

subproblem is infeasible, we adopt the convention 
that Z'(Q) = ZU(Q) = +oo). 

3. Consider any list of subproblems Qo, Ro, ... lo Qk, 

Rk, k > 0, where Ri is a leaf and either Qi = Ri, 
orRi is a descendant of Qi such that Z(Qj) = Z(Ri) 
for i = 0, ..., k. Then, subproblem Ri is not 
eliminated, using the dominance test, by subprob- 
lemQ(i+ 1 mod k+ 1), for i = 0, , * * , k. 

The first assumption ensures that the best upper 
bound of all evaluated subproblems corresponds to a 
feasible solution (if one exists), while the second as- 
sumption gives a condition based only on the bound- 
ing operation for applying the first elimination rule. 
The third assumption further characterizes the second 
elimination rule when it is represented by a domi- 
nance test, and prevents deadlock situations, as we 
will see shortly in the proof of convergence. We are 
now ready to state and prove the convergence 
theorem: 

Theorem. (Convergence of the BB Algorithm) Sup- 
pose that the three convergence assumptions are sat- 
isfied by the BB algorithm. When all generated 
subproblems have been examined, one has: 

1. There exists at least one evaluated subproblem 
(G 11 ? 0) 

2. The evaluated subproblem Q having the smallest 
upper bound among all evaluated subproblems 
(ZU(Q) < Z'(R) for all R E G1l), identifies an 
optimal solution of P, if one exists, and Z(P) 
Zu(Q). 

To prove the first part of the theorem, suppose the 
contrary. This implies that all leaves are of type 2, 
since, by the second convergence assumption, all 
leaves of type 1 are evaluated. Now, consider a sub- 
problem QO which eliminated a given leaf R. By def- 
inition of the branching operation and the finiteness of 
the BB tree, there must exist a leaf Ro which is either 
a descendant of QO or QO itself, such that Z(Qo) = 
Z(RO). Since Ro is a leaf of type 2, there exists a 
subproblem Q1 which eliminated R0. By the previous 
argument, we can identify a leaf R1 which is either a 
descendant of Q1 or Q1 itself, such that Z(Q1) = 
Z(R ). By applying the same argument a finite num- 
ber of times, we will eventually reach leaf R, because 
there is a finite number of leaves. This would generate 
a list of subproblems QO, Ro, ..., Qk, Rk = R, k > 
O that contradicts the third convergence assumption. 
Hence, there must exist at least one evaluated 
subproblem. 
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To prove the second part of the theorem, we dis- 
tinguish two cases. In the first case, suppose that P is 
infeasible (Z(P) = +oo). This implies that Q is infea- 
sible also and ZU(Q) = +oo, so that Z(P) = Zu(Q), 
and the theorem is verified. In the second case, sup- 
pose that P is feasible (Z(P) < +oo). We then prove 
the following assertion: for allR E G, Z(R) ? ZU(Q). 

This assertion implies that Z(P) ? Zu(Q), so that Q 
has a finite upper bound value. Thus, by the first 
convergence assumption, ZU(Q) corresponds to a fea- 
sible solution of P, and Z(P) < ZU(Q). Putting the 
two inequalities together, we get the desired result 
and the feasible solution corresponding to Z'(Q) is 
also optimal. 

To prove the assertion, suppose the contrary: 
3 R E G, Z(R) < Zu(Q). Without loss of generality, 
we can assume that R is a leaf because, if it is not, 
there exists a leaf which is a descendant of R having 
the same optimal value. Now, we distinguish two 
cases: R is a leaf of type 1 or R is a leaf of type 2. If 
R is a leaf of type 1, Z(R) = ZU(R) by the second 
convergence assumption. But, ZU(Q) < Zu(R) by the 
definition of Q. Thus, we have ZU(Q) < Zu(R) = 
Z(R) < Zu(Q), a contradiction. If R is a leaf of type 
2, then there exists a subproblem QO which eliminated 
R and Z(Qo) < Z(R). By definition of the branching 
operation, there must exist a leaf Ro which is either a 
descendant of QO or Qo itself, such that Z(Qo) = 
Z(RO). Again, we distinguish the same two cases. If 
Ro is a leaf of type 1, we have ZU(Q) < Zu(Ro) - 

Z(RO) - Z(Q0) S Z(R) < ZU(Q), a contradiction. If 

Ro is a leaf of type 2, we apply the same reasoning as 
above to identify subproblems Q1 and R1, such that 
Z(R1) = Z(Q1) < Z(RO), and R1 is a leaf. By re- 
peating the same argument a finite number of times, 
we will eventually reach either a leaf of type 1, in 
which case a contradiction is obtained in the same 
way as above, or leaf R. In that case, a list QO, 
Ro ... , Qk, Rk = R, k > 0, contradicting the third 
convergence assumption would have been generated 
by the algorithm, which yields a contradiction. This 
completes the proof of the assertion and, conse- 
quently, of the convergence theorem. 

If the second elimination rule consists only of the 
lower bound test, the convergence is easier to prove, 
because in that case we no longer need the third 
convergence assumption. We first reformulate the 
second elimination rule in the following way: 

Elimination rule 2 (by lower bound test): Q is not 
decomposed if it is evaluated, and another evaluated 
subproblem R has an upper bound which is not worse 
than the lower bound of Q, that is, Zu(R) < Z'(Q). 

With this new definition, the first part of the con- 
vergence theorem is trivially verified, because all 
leaves are now evaluated, and there exists at least one 
leaf, the number of generated subproblems being fi- 
nite. To prove the second part, we proceed in the 
same way as above, with the exception that the as- 
sertion: for all R E G, Z(R) ? Zu(Q), is now easier 
to prove. Suppose the contrary: 3 R E G, Z(R) < 
Zu(Q), and assume, without loss of generality, that R 
is a leaf. If R is a leaf of type 1, we obtain a contra- 
diction in the same way as above. If R is a leaf of type 
2, then there exists an evaluated subproblem R * such 
that ZU(R *) < Z'(R). Thus, it follows that ZU(Q) < 
Zu(R*) < Z'(R) < Z(R) < Zu(Q), which is a con- 
tradiction. This proves the assertion and, hence, the 
convergence theorem. 

1.3. Other Branch-and-Bound Algorithms 

It is easy to modify the description given in subsection 
1.1 to define an algorithm that identifies all optimal 
solutions. First, we redefine the branching operation 
such that pE has an optimal value which is strictly 
worse than pD, that is, Z(P") < Z(PE). Second, we 
impose a strict inequality to the second elimination 
rule. Then, when all generated subproblems have 
been examined, each evaluated subproblem with the 
smallest upper bound identifies an optimal solution, 
and by definition of the branching operation, all op- 
timal solutions have been found. The proof of con- 
vergence proceeds exactly as above, with the 
exception that the third convergence assumption is 
redundant, because the type of list it prohibits is now 
impossible to obtain. 

It is also possible to modify the method to find only 
an approximate solution. One may modify the branch- 
ing operation in such a way that the excluded set may 
contain an optimal solution; relax the condition that 
all generated subproblems must be examined before 
the algorithm stops; or use an E-approximate algo- 
rithm where the second elimination rule is modified 
such that a subproblem Q is eliminated by another 
subproblem R if Z(R) - e < Z(Q), where e > 0 is a 
parameter that may change its value during the exe- 
cution of the algorithm. The three approaches may be 
combined to obtain a wide variety of heuristic 
methods. 

1.4. Sequential Branch-and-Bound Algorithms 

We conclude Section 1 with some general remarks 
about the mechanism of the operations, and their 
order of execution in a traditional sequential environ- 
ment (one process, with access to a single memory, 
performs the instructions sequentially). 
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To solve a given problem, it is possible to define 
several branching and bounding operations of varying 
degrees of efficiency. With regard to the bounding 
operation, experience in sequential environments has 
shown that "tighter is better" (Ibaraki 1987). Further- 
more, branching and bounding operations may be 
interdependent, and may also depend on the history 
of the process, that is, the particular order in which 
the operations are performed. Finally, the time re- 
quired to perform a given bounding operation may 
vary significantly from one subproblem to another. In 
recent years, the tendency has been to spend more 
effort on the original problem than on other subprob- 
lems. The idea, verified by experience, is to obtain as 
soon as possible very tight bounds, in particular, a 
good upper bound to reduce the number of generated 
subproblems, and hence, the total amount of work. 

A possible order for the execution of operations in 
a sequential environment is given by the best-first BB 
paradigm. In this method, the value of the best upper 
bound found so far is kept in a variable best_Z for 
executing rapidly the lower bound test (we assume, 
for simplicity, that only the lower bound test is 
used for verifying the second elimination rule). Also 
kept in memory is a list L containing only evaluated 
but not yet examined subproblems (set G 10). Initially, 
best_Z is set to infinity and the original problem is 
evaluated and, if not solved, added to the list. At each 
step, if L is not empty, a subproblem Q in L with the 
smallest lower bound among all subproblems in L is 
selected (selection operation). The lower bound test 
is performed on Q, and if Q is not eliminated, it is 
decomposed according to the branching operation. 
Each newly generated subproblem is then evaluated, 
and if its upper bound is better than the current value 
of best_Z, it replaces it. The two elimination rules are 
also tested on the newly generated subproblems, 
which are added to the list if not eliminated. Another 
step is performed, until L becomes empty. The se- 
lection operation, called best-first selection, may be 
performed efficiently by managing the list as a heap 
data structure. The main advantage of this method is 
that, among all selection operations, the best-first 
selection is optimal with respect to the number of 
decomposed subproblems, when no ties occur among 
lower bounds, and the branching and bounding oper- 
ations do not depend on the history of the process 
(Fox et al. 1978). A disadvantage is that the method 
may require a lot of memory space for storing list L. 

The depth-first BB algorithm defines another order 
for the execution of operations. Here, the list L rep- 
resents the set of generated subproblems not yet eval- 
uated nor examined (set Goo). Initially, best_Z is set 

to infinity, and the original problem is evaluated and, 
if not solved, decomposed according to the branching 
operation. At each step, if the last examined subprob- 
lem was decomposed, all sons of this subproblem are 
added to the list, except one which is evaluated and 
examined. If the last examined subproblem was elim- 
inated, the selection operation consists of choosing a 
subproblem in L among those which have been gen- 
erated most recently. This subproblem is then evalu- 
ated and examined. Each time a subproblem is 
evaluated, the variable best_Z is updated if neces- 
sary. Another step is performed, until L is empty. A 
stack data structure may be used to perform effi- 
ciently the depth-first selection operation. There are 
three main advantages to the method. First, among all 
selection operations, it minimizes storage require- 
ments (Ibaraki 1987). Second, when a subproblem is 
not eliminated, a significant part of the information 
generated by the last bounding operation is directly 
available to hasten the evaluation of the next subprob- 
lem (Nemhauser and Wolsey 1988). In comparison, 
such a reoptimization feature is more difficult to im- 
plement when the best-first selection operation is 
used. Third, feasible solutions are generally found 
more rapidly than with other selection operations 
(Ibaraki 1987, Nemhauser and Wolsey 1988). This is 
especially the case when upper bounds are computed 
only for subproblems that correspond to leaves of the 
basic tree. A disadvantage of the method is that it may 
generate a large number of subproblems. This disad- 
vantage may be reduced by identifying a good upper 
bound in the early stages of the algorithm, thus 
strengthening the lower bound test, and conse- 
quently, reducing the number of generated 
subproblems. 

Other selection operations and many variations on 
best-first and depth-first algorithms are also possible. 
The reader is referred to Ibaraki (1987) for a more 
complete treatment of this topic. 

2. PARALLELISM IN BRANCH-AND-BOUND 
ALGORITHMS 

Computer architectures strongly influence the design 
of parallel BB algorithms. Hence, before presenting a 
classification of parallel BB algorithms and discussing 
issues related to algorithmic design and performance 
measures, we give a description of parallelism at the 
hardware level. This is to be distinguished from par- 
allelism at the software level, where several processes 
can simulate parallelism by sharing the resources of 
the same processor. Our description follows 
Bertsekas and Tsitsiklis (1989). 
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2.1. Parallelism at the Hardware Level 

The control parameter refers to the presence or ab- 
sence of a global control unit. Here, we only consider 
parallel architectures built according to the control- 
flow model: Each processor in the system is executing 
instructions in an order determined by a control unit. 
The other models proposed to date are the data-flow 
model, in which processors perform operations ac- 
cording to the availability of the input data, and the 
demand-flow model, in which processors execute op- 
erations in an order determined by the requirements 
for data (see Treleaven, Brownbridge and Hopkins 
1982 for a more complete description of these 
models). Control-flow parallel architectures with only 
one control unit belong to the SIMD (Single Instruc- 
tion Multiple Data) class, while systems with several 
control units (generally one per processor) belong to 
the MIMD (Multiple Instruction Multiple Data) class 
(Flynn 1966). 

Synchronization refers to the presence or the ab- 
sence of a global clock used to synchronize opera- 
tions among processors. When there is only one 
clock, we speak of a synchronous system, while in the 
presence of several clocks, typically one per proces- 
sor, the system is called asynchronous. SIMD com- 
puters are synchronous by definition, while MIMD 
systems are mainly asynchronous. 

The grain indicates the amount of data each pro- 
cessor of the system can handle. In fine-grained sys- 
tems, each processor can handle only a small amount 
of data, corresponding to scalar or small vector op- 
erations. At the other extreme, coarse-grained sys- 
tems are characterized by the possibility of 
simultaneous treatment of large amounts of data. 

The communication parameter refers to the way 
processors exchange information. There are two main 
possibilities: Processors may write and read in a com- 
mon memory accessible to all (shared-memory sys- 
tems), or may exchange messages (message-passing 
systems). Shared-memory systems may be further 
characterized by the presence of either a physically 
realized common memory, or a mechanism permit- 
ting access from each processor to any area of mem- 
ory: tightly or loosely coupled systems, respectively. 
Message-passing systems are characterized by their 
interconnection network topology, which describes 
how processors are connected. The most common 
topologies are the ring, the tree, the mesh, and the 
hypercube (for details, see Bertsekas and Tsitsiklis). 

Last, one considers the number of processors. 
Massively parallel systems are made of a large num- 
ber of processors, on the order of thousands. 

Fine-grained systems are usually massively parallel, 
while coarse-grained ones have generally less proces- 
sors, say on the order of tens (but the situation is 
changing rapidly, and there now exists some coarse- 
grained systems with more than one thousand pro- 
cessors). Note that tightly coupled shared-memory 
systems are generally restricted to a small number of 
processors, usually not more than twenty, due to the 
difficulty of implementing simultaneous access to a 
common memory without provoking bottlenecks. 

The distinctions introduced at the hardware level 
are less strict when one considers the software 
level. Indeed, by adding appropriate software mech- 
anisms, it is possible with some systems to simulate 
the behavior of other systems, although the efficiency 
of such simulations is questionable. For example, 
an MIMD system may simulate an SIMD system, 
or an asynchronous system may simulate a synchro- 
nous system. For the remainder of the text, we mainly 
consider parallelism at the software level, although 
there is a strong relationship between the conception 
of parallel algorithms at the software level and their 
actual implementation on parallel architectures. 

2.2. Classification of Parallel Branch-and-Bound 
Algorithms 

We identify three main approaches in designing par- 
allel BB algorithms. Parallelism of type 1 introduces 
parallelism when performing the operations on gen- 
erated subproblems. It consists, for example, of ex- 
ecuting the bounding operation in parallel for each 
subproblem to accelerate the execution. Thus, this 
type of parallelism has no influence on the general 
structure of the BB algorithm and is particular to the 
problem to be solved. Parallelism of type 2 consists of 
building the BB tree in parallel by performing opera- 
tions on several subproblems simultaneously. Hence, 
this type of parallelism may affect the design of the 
algorithm. This is also the case for parallelism of type 
3, which implies that several BB trees are built in 
parallel. The trees are characterized by different op- 
erations (branching, bounding, testing for elimina- 
tion, or selection), and the information generated 
when building one tree can be used for the construc- 
tion of another. 

The three types of parallelism may be combined 
either sequentially (Pekny and Miller 1992, for exam- 
ple, who perform in parallel the bounding operation at 
the root node, while parallelism of type 2 is exploited 
for the rest of the algorithm), or hierarchically. In the 
second case, for example, several BB trees are con- 
sidered simultaneously, each of these trees is built 
in parallel, while, finally, treating each subproblem in 
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parallel (Miller and Pekny 1993). Most of the time, 
however, only one type of parallelism is exploited. 

Parallelism of type 3, especially suited for imple- 
mentation on coarse-grained asynchronous MIMD ar- 
chitectures, has been the object of very few studies. 
We briefly present three examples that illustrate its 
behavior. In the first example, the BB trees being 
built differ only in the branching operations (Pekny 
1989, Miller and Pekny 1993). In the second example, 
only the selection operation differentiates the BB 
trees (Janakiram, Agrawal and Mehrotra 1988a, b, 
Janakiram et al. 1988). A variant of the depth-first 
operation, called randomized depth-first, is used. It 
randomly selects the next subproblem to evaluate and 
examine among the last generated subproblems. 
Thus, there exists an infinitesimal probability that two 
processes, each of them performing a randomized 
depth-first operation, build the same BB tree. Repli- 
cation of work is possible though, particularly at the 
early stages of the algorithm. To avoid this, a global 
list of the status of the subproblems in the first k levels 
of the basic tree is maintained. Results of a simulation 
with ten processes show that this feature is essential 
to obtain good performance. They also suggest that an 
implementation of this algorithm on shared-memory 
systems is more appropriate than on message-passing 
ones. Finally, in the third example, the BB trees are 
differentiated only by the application of the lower 
bound test (Kumar and Kanal 1984). The main idea is 
to let each process perform the lower bound test with 
different values for the upper bound. At any time during 
the execution of the algorithm, one process (not nec- 
essarily the same) uses the best upper bound found so 
far by all processes, while the other processes take an 
"optimistic" view by subtracting E > 0 from the value 
of the best upper bound. Hence, this method essen- 
tially consists of performing concurrently several 
E-approximate BB algorithms. Since, at any time, at 
least one process uses E = 0 to perform the lower 
bound test, the whole algorithm can be shown to con- 
verge to an optimal solution, if one exists. Note that this 
method is appropriate only for algorithms that fre- 
quently update the upper bound, in particular when 
the bounding operation gives weak bounds, or when a 
good starting upper bound is not known. 

The second type of parallelism has been the object 
of abundant work. The approach is mostly appropri- 
ate for implementation on coarse-grained asynchro- 
nous MIMD systems, although some studies have been 
conducted on massively parallel fine-grained SIMD 
systems (Kindervater and Trienekens 1988, Dehne, 
Ferreira and Rau-Chaplin 1989a, b), on a pipeline com- 
puter, and on a data flow architecture (Kindervater and 

Trienekens). Fine-grained implementations, however, 
are appropriate only for algorithms that require small 
amounts of memory, particularly for the bounding op- 
eration. As for SIMD systems, all instructions must be 
the same for all processors, which is quite unnatural for 
general BB algorithms (as noted at the end of Section 1, 
the bounding operation may be quite different from one 
subproblem to another). Results on a fine-grained 
SIMD architecture and on a pipeline computer 
(Kindervater and Trienekens) show that the overhead 
due to the synchronization of all instructions is too 
costly, while the experimental nature of the data flow 
architecture, particularly the fact that only small in- 
stances could be solved (Kindervater and Trienekens), 
makes it difficult to draw general conclusions about its 
usefulness when compared to the classical control-flow 
approach. 

To classify implementations of the second type of 
parallelism on asynchronous MIMD systems, we first 
distinguish between synchronous and asynchronous 
algorithms. A synchronous algorithm is divided into 
phases, such that in each phase the processes perform 
instructions independently of each other, while com- 
munications occur only between phases; thus, all pro- 
cesses must synchronize before communicating 
information. We further distinguish between strictly 
and loosely synchronous algorithms. In the first case, 
the communication protocol (which information to 
send and where) is assumed fixed and does not vary 
with different executions. These algorithms display a 
deterministic behavior in the sense that the processes 
follow exactly the same path for two different runs, 
unless each computing phase has a nondeterministic 
component. In a loosely synchronous algorithm, the 
processes may not follow the same path for different 
executions. For example, the communication proto- 
col may depend on run-time information. When exe- 
cuting asynchronous algorithms, communications 
may occur at any time and are unpredictable. Thus, 
these algorithms have a nondeterministic behavior. 

The second parameter used in our classification is 
based on the notion of work pool, which is a memory 
location where processes find and store their units of 
work (generated subproblems that are not yet exam- 
ined). Typically, a process looking for work picks up 
a subproblem in a work pool, and evaluates, or ex- 
amines it. When it finishes its action, the process 
usually stores the subproblems that are not yet ex- 
amined in the same or in a different work pool. A 
process may also take actions independently of any 
work pool. For example, a subproblem newly gener- 
ated by the process can be evaluated and even 
examined without first being stored and retrieved 
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from a work pool. Our classification distinguishes 
between single and multiple pool algorithms. 

In the first case, there is only one memory location 
where units of work are stored. The sequential best- 
first and depth-first algorithms mentioned in subsec- 
tion 1.4 are examples of single pool algorithms, where 
the pool is managed as a single list. Note that the pool 
may also be organized into two distinct lists 
(Miller and Pekny 1989, Pekny and Miller 1990, 1992, 
Kudva and Pekny 1993): One list contains subprob- 
lems that are not evaluated nor examined (set Goo), 
and another, subproblems that are evaluated but not 
yet examined (set G1o). Single pool algorithms are 
implemented mainly on shared-memory systems. On 
message-passing architectures, it is possible to imple- 
ment them by using the master-slave paradigm: One 
process, called master, manages the work pool, and 
sends work units to other processes, called slaves, 
that send back results to fill the work pool. 

In multiple pool algorithms, there are several mem- 
ory locations where processes find and store their 
units of work. Several organization schemes are pos- 
sible, the three most common being the collegial, the 
grouped, and the mixed. In a collegial algorithm, each 
work pool is associated with exactly one process. In 
a grouped organization, processes are partitioned, 
and each work pool is associated with a subset of this 
partition. Note that the collegial organization is a 
particular case of the grouped one, where the parti- 
tion is made of singletons. In a mixed organization, 
each process has an associated work pool, but there 
is also a global work pool, shared by all processes. 

In conclusion, we can classify parallel BB algo- 
rithms of type 2, intended to run on asynchronous 
MIMD architectures, as either Synchronous Single 
Pool (SSP), Asynchronous Single Pool (ASP), 
Synchronous Multiple Pool (SMP), or Asynchronous 
Multiple Pool (AMP) algorithms. 

2.3. Algorithmic Design Issues 

Other parameters may be used to characterize parallel 
BB algorithms of type 2; see, in particular, the clas- 
sification proposed by Trienekens and de Bruin. 
However, instead of including these parameters in a 
taxonomy, we think it is more useful to introduce 
them as possible answers to problems of algorithmic 
design which occur naturally in this type of parallel 
BB algorithms. 

One of these problems, the initial generation and 
allocation of work units, arises at the beginning of the 
execution of the algorithm, when only one subprob- 
lem, the root node of the tree, is available to all 
processes. Since it often happens that the branching 

operation generates few subproblems, a start-up 
phase where parallelism is not fully utilized seems 
difficult to avoid. On the other hand, using parallelism 
as soon as several work units become available may 
not be a good policy either. Consider, for example, a 
sequential depth-first algorithm using a dichotomous 
branching scheme. It is common to define a branching 
operation in such a way that only one of the two 
newly generated subproblems has a good probability 
of leading to an optimal solution. The depth-first se- 
lection operation would precisely choose this sub- 
problem, while the evaluation and examination of the 
other subproblem would be delayed until the subtree 
with the selected subproblem at its root is completely 
examined. At this point, if an optimal solution has 
been found, there is a good probability that the other 
subproblem will be eliminated immediately. If the 
same branching strategy is used in a parallel environ- 
ment, and subproblems are examined as soon as they 
become available, the two subproblems can be exam- 
ined simultaneously. Then, the subtree rooted at the 
subproblem not selected by the sequential depth-first 
operation may now contain more generated subprob- 
lems, resulting in extra work compared to the sequen- 
tial algorithm. This explains the so-called detrimental 
anomaly (Li and Wah 1984a), where a parallel algo- 
rithm is slower on a given instance than the corre- 
sponding sequential algorithm. The goal may thus be 
stated as follows: Use all processes as soon as pos- 
sible, while avoiding giving them unpromising sub- 
problems (that have only a small chance of leading to 
an optimal solution). 

Several strategies have been proposed to address 
this issue: 1) assign the original problem to one pro- 
cess, and gradually broadcast among processes the 
units of work as they are created; 2) generate several 
subproblems by performing a special branching oper- 
ation (the number of subproblems thus created being 
normally larger than the number of processes); 3) one 
process performs a sequential BB algorithm up to a 
point where a "sufficient" number of unexamined 
subproblems are available; 4) the processes perform a 
sequential phase in which the same tree is built by 
every process and, when the number of unexamined 
subproblems becomes at least equal to the number of 
processes, each process selects the subproblems on 
which it will subsequently work. The first three ap- 
proaches can be used in all types of algorithms, while 
the last one is suited mainly for multiple pool algo- 
rithms. The choice of an appropriate strategy depends 
on practical considerations, such as the nature of the 
parallel architecture being used and the characteris- 
tics of the problem to solve. 
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Following the initial allocation of work units, de- 
signing a policy for subsequent allocation and sharing 
of work units among processes is another major issue. 
The objectives of such a policy should be to balance 
the workload among processes (all processes should 
do an approximately equal amount of work to fully 
utilize parallelism), and to feed them with promising 
units of work, to avoid a situation where the parallel 
algorithm would generate more subproblems than a 
corresponding sequential algorithm. Achieving these 
objectives is relatively easy in single pool algorithms. 
In multiple pool algorithms, however, the situation is 
more complex. One alternative is to dynamically cre- 
ate new processes that will take parts of fully loaded 
work pools (Schwan, Gawkowski and Blake 1988, 
Schwan et al. 1989a, b, Jansen and Sijstermans 1989). 
Another, more common, alternative is to have a fixed 
number of processes and to allow exchange of work 
units among pools. If this policy is used, we further 
distinguish between static and dynamic allocation 
strategies. In a static strategy, a given number of tasks 
(subproblems) are initially created, and processes 
subsequently share these tasks. This strategy is 
mainly used in mixed organization algorithms, where 
the global pool is used to keep the tasks, while each 
process performs a sequential BB algorithm (by using 
its own local pool) on one task selected from the 
global pool. Thus, in a static approach, there are no 
exchanges of subproblems among local work pools. 
Dynamic strategies, on the contrary, allow sharing of 
work units among local pools. Decisions on how to 
perform these exchanges are usually taken by the 
processes associated with the pools. We distinguish 
three classes of dynamic strategies (see Kroger and 
Vornberger 1990 for a similar classification): 

1. Strategy on request. In this approach, a process 
with an (almost) empty work pool reacts by send- 
ing a request for work to another process. The 
request may be accepted, and a part of one work 
pool is transferred to the other, or rejected, in 
which case the process may decide to send another 
request. If the receiving process accepts the re- 
quest, it must decide how many work units will be 
transferred and how they will be selected. 

2. Strategy without request. Here, processes decide 
to share work units without being requested to by 
other processes. Before sending work units to 
another pool, each process must answer the fol- 
lowing questions: How often to send work units? 
To which pool to send them? How many work 
units to send? How should they be selected? 

3. Combined strategy. This approach combines the 

two previous ones. Processes exchange units of 
work without being asked for, and sends requests 
when the level of their work pool is too low. 

Another design issue concerns the application of 
the second elimination rule. To apply it when it is 
defined by the lower bound test (see Wah, Li and Yu 
1985 for a brief discussion of the application of dom- 
inance tests in a parallel environment), a process 
needs an upper bound on the optimal value of the 
given subproblem. Strategies for communicating up- 
per bounds among processes depend mainly upon the 
type of algorithm and the architecture being used to 
implement it. For example, in an asynchronous algo- 
rithm on a shared-memory system, a variable acces- 
sible to all processes keeps the value of the best upper 
bound generated so far. When a process finds a better 
upper bound, it communicates it to other processes 
simply by updating the value of the variable. In an 
asynchronous algorithm on a message-passing archi- 
tecture, each process may have access to a local 
variable that keeps the best upper bound it knows. 
When a process finds a better upper bound, it com- 
municates it to other processes by sending its value. 
Usually, this communication step consists in a broad- 
cast of the message to all processes (during the at- 
tempted broadcast, the message may be killed by 
some process which has found a better upper bound). 
The efficiency of such a broadcast is clearly depen- 
dent on the interconnection network topology. 

The issue of termination detection is trivially 
solved for single pool and SMP algorithms. The real 
problem arises only for AMP algorithms on message- 
passing architectures, because it is not sufficient that 
all work pools be empty to declare termination. In- 
deed, some messages may still be traveling through 
the interconnection network. Of course, this problem 
is not specific to parallel BB algorithms, and methods 
for detecting termination of algorithms on distributed 
systems (without a central control) have been studied 
widely (see, for example, the paper by Dijkstra and 
Sholten 1980, and the references given in chapter 8 of 
Bertsekas and Tsitsiklis). 

2.4. Performance Measures 

Apart from problems of algorithmic design, another 
difficulty that arises naturally in a parallel environ- 
ment is how to measure adequately the performance 
of an algorithm (see also the paper by Barr and 
Hickman 1993 on this subject). Related to parallel BB 
algorithms, several measures are possible: 

Quality of the solution: This measure is only rele- 
vant in approximate BB algorithms. For example, one 
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may compare the best value obtained by a parallel 
algorithm with the one found by a sequential algo- 
rithm to investigate if parallelism can improve, and to 
what extent, the quality of the solution. 

Number of generated subproblems: There are two 
variants of this measure: the total number of gener- 
ated subproblems, and the number of subproblems 
generated before the best solution is found. This last 
measure introduces a timing notion, and may be dif- 
ficult to estimate (in an AMP algorithm or an algo- 
rithm of type 3, for example). The first measure may 
be used in all types of algorithms, but it may not 
represent a fair evaluation of the total amount of work 
performed by the algorithm for two main reasons. 
First, the work performed may vary significantly from 
one subproblem to another (as noted in subsection 
1.4). Second, it does not take into account additional 
work introduced by parallelism, such as the sharing 
of work units among processes, and the communica- 
tion of an upper bound. Another problem related to 
this measure (and to other measures as well) is that it 
may vary significantly with different executions when 
the algorithm has a nondeterministic behavior, par- 
ticularly if it is an asynchronous one. To obtain an 
adequate measure, it is then preferable to obtain sta- 
tistics such as the mean and the standard deviation, 
derived from experimenting with several runs. 

Speedup and efficiency: The speedup measure at- 
tempts to evaluate the improvement in time perfor- 
mance when more than one processor is used. Let 
T(p) denote the time to solve a given problem onp ? 
1 processors. The speedup and the efficiency are then 
defined as S(p) = T(1)/T(p) and E(p) = S(p)!p, 
respectively. The major difficulties with this definition 
consist of determining which algorithms should be 
used to measure the times, and how these should be 
measured. The answer to these questions depends 
mainly on practical considerations. For example, one 
definition for T(1) is the time required by the best 
sequential algorithm. To evaluate the speedup of a 
given parallel algorithm based on this definition, time 
is measured with respect to the same parallel archi- 
tecture for both the sequential and the parallel algo- 
rithms. However, the best sequential algorithm for all 
instances may not be known, as is often the case with 
problems solved by BB algorithms. One may then use 
as T(1) the time obtained by a "good" sequential 
algorithm, or the time required by the parallel algo- 
rithm running on one processor. These are the 
methods of choice when studying the speedup per- 
formance of a parallel BB algorithm. In particular, a 
C"good" sequential BB algorithm can be one in which 
the branching and bounding operations, as well as the 

elimination rules, are defined similarly as in the par- 
allel algorithm (it is not clear how to generalize this 
definition of a "good" sequential algorithm for the 
case of parallel algorithms of type 3). 

3. SURVEY 

In this section, we present a survey of the literature 
on parallel BB algorithms of type 2, designed to be 
executed on coarse-grained asynchronous MIMD ar- 
chitectures (references to other types of algorithms 
have been given in the previous section). Our survey 
is based on a historical point of view, because the 
research interests seem to follow a pattern according 
to the period when researchers conducted their work. 
We distinguish three periods. In the early years 
(1975-1982), few parallel systems were available, and 
researchers are forced either to simulate parallelism 
or to use experimental architectures. Nevertheless, 
they discover interesting phenomena, in particular 
the possibility of superlinear speedups (S(p) > p). 
In the following years (1983-1986), researchers focus 
on the theoretical understanding of the performance 
of parallel BB algorithms. They mainly study speedup 
anomalies and derive expressions to evaluate the 
maximum speedup attainable by certain types of par- 
allel BB algorithms. Since 1987, the focus is on the 
implementation of many types of algorithms on var- 
ious parallel architectures. 

3.1. Early Experiments (1975-1982) 

The first simulation of a parallel BB algorithm was 
conducted by Pruul (1975; the results were published 
thirteen years later by Pruul, Nemhauser and 
Rushmeier 1988). The algorithm may be classified as 
AMP, because several processes operating asynchro- 
nously perform their own depth-first procedure. A 
coordinator is in charge of dispatching work units 
among processes. Initially, it assigns the original 
problem to one process. Subsequently, it answers 
requests from processes that emptied their work pool 
by giving them one subproblem taken from a non- 
empty work pool. The experiments are conducted 
with ten randomly generated 25-city instances of the 
asymmetric traveling salesman problem (TSP), on up 
to five processes. Results indicate that the number of 
generated subproblems decreases significantly when 
the number of processes is increased. Thus, average 
speedups onp processes are sometimes larger thanp. 

Results of another simulation experiment were 
published by Imai, Fukumura and Yoshida (1979), 
and Imai, Yoshida and Fukumura (1979). The 
algorithm belongs to the ASP class, because several 
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processes operating asynchronously share the same 
work pool, which is a list of subproblems not yet 
examined nor evaluated. A depth-first selection op- 
eration is used: A given process selects the next sub- 
problem to evaluate and examine among the deepest 
nodes in the tree. Experiments are conducted with 
randomly generated trees and instances of the set 
covering problem, on up to 128 processes. The same 
tendency as in Pruul's study is observed and is called 
an "6acceleration effect." 

The first experiments on a parallel architecture ap- 
pear to have been conducted at Carnegie-Mellon 
University in 1975 (Weide 1982), on a 5-processor 
loosely coupled shared-memory system, called 
C.mmp. The parallel algorithm, designed to solve 0-1 
integer linear programming problems (ILPP), is very 
simple: Generate p subproblems and solve them in- 
dependently using the same number of processes, 
each performing a sequential BB algorithm. Weide 
reports that average running times can sometimes be 
reduced by partitioning into more subproblems than 
there are processors, and by sharing the processors 
among the active subproblem-solving processes. Ex- 
periments with another parallel system designed at 
Carnegie-Mellon University were reported by Fuller 
et al. (1978). The parallel system, called Cm*, is a 
10-processor loosely coupled shared memory archi- 
tecture, in which each processor has its own local 
memory. The authors selected several algorithms to 
measure the efficiency of their architecture and its 
adaptability to various algorithmic designs. Among 
them is a BB algorithm for solving set partitioning 
problems. The parallel implementation is of the AMP 
type using a mixed organization. The algorithm starts 
by generating more than k * p subproblems, where k 
is a parameter arbitrarily fixed to a value of 10, and 
p is the number of processes used (one per proces- 
sor). These subproblems are added to the global list 
where processes pick them, and perform sequential 
depth-first BB on each of them. The best upper bound 
found so far is kept in a global variable accessible 
to all processes. Results with five instances on up to 
eight processes show near-linear speedups, and even 
super-linear speedups for one data instance. 

The first detailed study on the performance of BB 
algorithms implemented on a parallel architecture ap- 
peared in 1982. Mohan (1982, 1983, 1984) designed 
two single-list algorithms to solve the asymmetric 
TSP, and performed experiments on a 50-processor 
Cm*. The first algorithm is a synchronous master- 
slave approach, and thus belongs to the SSP class. At 
each phase, the master selects a subproblem accord- 
ing to a best-first criterion, and performs a branching 

operation which consists of creating p subproblems 
and sending one to each of the p slaves. The slaves 
perform bounding operations on the subproblems 
they receive and send back their results to the master. 
The second algorithm belongs to the ASP class. The 
processes pick subproblems in the list according to a 
best-first selection operation, perform branching and 
bounding operations, and add the newly generated 
subproblems to the list. Here, the branching operation 
is the classical dichotomous scheme. Results of a single 
run on a 30-city instance with up to 16 processors (one 
process per processor) show that the first algorithm is 
rather inefficient for two main reasons. First, the 
branching operation generates too many subproblems 
compared to the classical dichotomous rule. Second, 
waiting times on each processor due to synchronization 
and inexact workload balance significantly slow down 
the execution. Results also show that the speedup 
achieved by the second algorithm is rather limited due 
to contention of access to the single list. 

Other early experiments on loosely-coupled 
shared-memory systems are mentioned in 
M0ller-Nielsen and Staunstrup (1984), while parallel 
BB algorithms of the AMP class designed for 
message-passing architectures are presented in 
El-Dessouki and Huen (1980), Burton et al. (1982), 
DeWitt, Finkel and Solomon (1984), and Lavallee and 
Roucairol (1985). Another approach for implementing 
parallel BB algorithms consists of designing special- 
ized hardware. MANIP, a specialized parallel sys- 
tem, was first presented in 1981 (Wah and Ma 1981), 
and subsequent improvements to the original design 
were proposed in the following years (Wah and Ma 
1984, Wah, Li and Yu 1984, 1985). The architecture 
was never realized, but the efficiency of the design was 
analyzed by performing simulations on a sequential 
computer. Other specialized architectures were also 
proposed by Harris and Smith (1977), and Desai 
(1977, 1978, 1979). 

3.2. Theoretical Studies (1983-1986) 

Many researchers have studied the theoretical behav- 
ior of SSP algorithms with the following characteris- 
tics: 1) there are p processes performing branching 
and bounding operations; 2) the best upper bound 
found so far is kept in a global variable called best_Z, 
accessible to all processes; 3) the subproblems are 
stored in a single list L; 4) the algorithms are syn- 
chronous, and may be described as follows. Initially, 
the original problem is added to list L (possibly once 
a bounding operation has been performed). At each 
phase, min(JL , p) subproblems in L are chosen ac- 
cording to a given selection criterion. Each selected 
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subproblem is treated by exactly one process. This 
process performs branching and bounding operations, 
and tests for elimination, on both the subproblem and 
the new ones obtained by decomposition, in an order 
that varies with the algorithm. The branching opera- 
tion is assumed to be fixed and does not depend on the 
selection criterion. At the end of each phase, best_Z 
has been updated by all processes, and the generated 
subproblems which have not been eliminated are 
added to the list. The algorithm stops when the list is 
empty at the beginning of a phase. 

The selection criteria commonly used are similar to 
the sequential ones. They can be characterized by a 
selection function v, which associates with each sub- 
problem Q a value v(Q), such that the subproblems 
selected to be examined in priority have the smallest 
v values. Thus, in a best-first algorithm, v(Q) = 

Z'(Q), and in a depth-first algorithm v(Q) = -d(Q), 
where d(Q) is the depth of subproblem Q in the BB 
tree. Ties among the v values of several subproblems 
are possible (in this case, they are broken arbitrarily 
when performing the selection operation), unless the 
selection function is one-to-one. It is possible to mod- 
ify a selection function to ensure that it is one-to-one 
(details can be found in Li and Wah 1984a). 

The selection function plays a central role in un- 
derstaniding two anomalous behaviors displayed by 
parallel BB algorithms of the type described above. 
Let I(p) be the number of phases performed by the 
parallel BB algorithm using p processes to solve a 
given problem instance. We have a detrimental anom- 
aly if there exists a problem instance such that I(p 1)/ 
I(P2) < 1 and pi <P2. We have an acceleration 
anomaly if there exists a problem instance such that 
I(P /I(P 2) > P2/P1 and P1 < P2- 

Anomalous behaviors of parallel best-first algo- 
rithms (the selection function not necessarily being 
one-to-one) were first studied by Lai and Sahni (1982, 
1983, 1984), and later on by Lai and Sprague (1985a, 
b, 1986). In particular, assuming that Z'(Q) < Z'(R) 
whenever R is a descendant of Q in the basic tree, 
they show that when P1 = 1 detrimental and accel- 
eration anomalies cannot occur if all internal nodes of 
the basic tree have a lower bound different from the 
optimal value. However, they also show that detri- 
mental and acceleration anomalies are possible for 
arbitrary values of Pi' P2. For parallel depth-first 
algorithms, Quinn (1983) shows a similar result, and 
Li and Wah (1986b) provide sufficient conditions for 
detrimental anomalies not to occur, and necessary 
conditions for acceleration anomalies. In spite of the 
possibility of anomalous behaviors, results of simu- 
lations of best-first algorithms to solve the 0-1 

knapsack problem and the TSP (Lai and Sahni 1984), 
and of a depth-first algorithm to solve the TSP (Quinn 
1983), show that anomalies, particularly detrimental 
ones, are very rare. 

Anomalous behaviors for more general selection 
functions were studied by Burton et al. (1983), Li and 
Wah (1984a, b, c, 1986a, 1990), Li (1985), and Wah, Li 
and Yu (1984, 1985). In particular, whenp1 = 1, they 
show that detrimental anomalies are impossible if the 
selection function is one-to-one and v(Q) S v(R) 
whenever R is a descendant of Q in the basic tree. Li 
and Wah (1984c) also analyze the behavior of algo- 
rithms that use dominance tests, and of e-approximate 
algorithms. The basic results on anomalous behaviors 
are difficult to extend to more general models of parallel 
BB algorithms. Li and Wah (1986a) briefly analyze the 
case where multiple lists are used, while Trienekens 
(1989a, 1990) considers a class of algorithms that may 
include asynchronous ones. However, the condition 
defining this class of algorithms can be verified a priori 
only for synchronous algorithms. Finally, Mans and 
Roucairol (1993) study anomalies occurring in parallel 
best-first algorithms in which ties among lower bounds 
are broken using a second selection function. 

Another related research subject is the derivation 
of lower and upper bounds on the speedup obtained 
by parallel BB algorithms. Quinn and Deo (1983, 
1986) and Huang and Davis (1987) give upper bounds 
on the speedup of an ASP algorithm using a single list 
and a best-first selection operation, while Li and Wah 
(1984b, 1986b) give bounds on the speedup of best- 
first and depth-first SSP algorithms. 

3.3. Experiments on Parallel Systems 
(Since 1987) 

Since 1987, researchers have focused on the design of 
parallel BB algorithms and their implementation on 
general-purpose parallel systems (one exception be- 
ing the work by Cheng and Wang 1990, where a 
specialized architecture is proposed for implementing 
an AMP mixed organization algorithm). In this sub- 
section, algorithms are grouped according to our clas- 
sification and, for each class we select representative 
algorithms and give both general descriptions, and an 
overview of their most significant results. 

3.3.1. Synchronous Single Pool Algorithms 
As indicated previously, the SSP model has been used 
mainly to study theoretical properties of parallel BB 
algorithms. Few researchers have actually imple- 
mented this approach on a parallel system. All 
implementations of this approach were realized on 
message-passing architectures by using a master- 
slave model. 
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Quinn (1990) implements an SSP algorithm, similar 
to the model described in subsection 3.2, on a 
64-processor NCUBE/7 hypercube. The master pro- 
cess, running exclusively on one processor, manages 
the single list and selects subproblems to send to each 
slave according to a best-first criterion. At every it- 
eration, each slave receives one subproblem, per- 
forms branching and bounding operations, and sends 
back to the master the newly generated subproblems. 
Experiments are performed on ten 30-vertex in- 
stances of the TSP. A model is also proposed for 
predicting the speedup performance of the algorithm. 
Using this model, it is shown that the algorithm per- 
forms reasonably well (being competitive with some 
AMP algorithms), when the time required to perform 
operations on one subproblem largely dominates the 
time to communicate it. 

McKeown et al. (1991; see also Rayward-Smith, 
Rush and McKeown 1993, McKeown, Rayward- 
Smith and Turpin 1991) implement a similar algorithm 
on a network of transputers (using up to eight pro- 
cessors), and report experiments on one instance of 
the Steiner tree problem using a depth-first selection 
operation. The work pool is stored in the memory of 
the master processor, but contains only limited infor- 
mation about the subproblems generated so far: The 
priority of each subproblem (the value of the selection 
function), its lower bound (to perform the lower 
bound test before sending the subproblem), and the 
processor on which the information about the sub- 
problem is kept. When the master selects a subprob- 
lem, it is assigned in priority to the processor which 
keeps all the information concerning it. This scheme 
clearly minimizes communication times when imple- 
menting a single pool algorithm in a message-passing 
environment. The algorithm appears, however, to be 
less efficient than a corresponding ASP one. 

Gendron and Crainic (1993b) (see also Gendron 1991) 
choose an SSP approach to implement a parallel ver- 
sion of a depth-first sequential approximate algorithm 
for solving the multicommodity location problem with 
balancing requirements. The algorithm stops when a 
fixed number of subproblems have been examined. In 
this context, it is crucial to avoid situations where the 
parallel algorithm finds a worse solution than the one 
obtained by the sequential algorithm. To attain this 
objective, the authors divide the parallel algorithm into 
two phases: a sequential phase, where the master pro- 
cess performs the sequential method up to N iterations, 
and a parallel phase. In this phase, the master selects 
subproblems according to their depths, sends them 
to the slaves, performs bounding and branching 
operations on one subproblem, and examines the 

subproblems sent to the slaves. The slaves only per- 
form bounding operations on the subproblems they 
receive. This scheme is justified by the fact that, for 
most data instances, the time to perform the bounding 
operation on one subproblem clearly dominates the 
time for other computations or communications. Ex- 
periments on a network of up to 16 transputers are 
reported. 

3.3.2. Asynchronous Single Pool Algorithms 

Except for being asynchronous, almost all ASP algo- 
rithms proposed in the literature have the same char- 
acteristics as the SSP algorithms described 
previously: a fixed number of processes, a single list 
of unexamined subproblems, and a global variable 
that keeps the best upper bound found so far. These 
algorithms were implemented both on shared-memory 
systems and on message-passing architectures. In the 
second case, either the operating system's primitives 
are used to simulate a shared-memory or a 
master-slave approach is implemented. A theoretical 
analysis of this type of implementation based on a 
queueing network model, is given by Boxma and 
Kindervater (1991). The model is used to analyze 
the effect of variations in the number of slaves, or 
in the speed of the master and the slaves. 

Roucairol (1987a, b) implements an ASP best-first 
algorithm on a 4-processor Cray X-MP 48 (a 
shared-memory architecture) for solving the qua- 
dratic assignment problem (QAP). Experiments are 
also reported on an emulator and comparisons are made 
with depth-first and random selection operations. Near- 
linear speedups are observed. A similar implementation 
on a 4-processor Cray2 is also used by Plateau and 
Roucairol (1989) to solve the 0-1 multiknapsack prob- 
lem. To the basic approach of Roucairol, the authors 
add a mechanism to improve workload balancing: A 
process accessing the pool is allowed to treat a sub- 
problem only if its current load (measured from 
the beginning of the execution) does not exceed t% 
of the mean load (best results were obtained for t = 50). 
Essentially the same approach as in Roucairol's paper 
is also used by Boehning, Butler and Gillett (1988) for 
solving ILPP with a simplex-based bounding proce- 
dure. Experiments were performed on three shared- 
memory systems with up to 20 processors. Superlinear 
speedups were observed for some instances. Different 
approaches for implementing ASP algorithms on 
shared-memory architectures can also be found in Barr 
and Stripling (1992) and Mohamed (1992). 

Kumar, Ramesh and Nageshwara Rao (1988) also 
implement a best-first ASP algorithm similar to 
Roucairol's, but use a concurrent heap data structure 
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(Nageshwara Rao and Kumar 1988a, b) to manage the 
list of subproblems. This structure allows multiple 
heap insertions and deletions to be performed con- 
currently. It is shown on two instances of the TSP that 
this data structure dramatically improves perfor- 
mances over the traditional heap structure. The au- 
thors report experiments on many instances of the 
TSP and the vertex cover problem (VCP) by using a 
100-processor loosely coupled shared-memory sys- 
tem, the BBN Butterfly computer. In particular, when 
the concurrent heap is used, a near-linear speedup is 
observed on a 25-city instance of the TSP. It is also 
shown that an ASP approach may not be as efficient 
for solving the VCP, because the time to perform a 
bounding operation for the VCP is significantly less 
than for the TSP (for the tested data instances). In this 
case, contention for access to the single list, even 
when it is managed as a concurrent heap, limits the 
performance of the algorithm. Le Cun, Mans and 
Roucairol (1993) (see also Mans 1992a) performed an 
extensive comparative study of concurrent priority 
queue data structures used in best-first BB algo- 
rithms. Their experiments on a shared-memory sys- 
tem of nine processors confirm that the concurrent 
heap structure, used by Kumar, Ramesh and 
Nageshwara Rao, exhibits good speedup perfor- 
mance. However, they also show that data structures 
other than the classical heap may be more efficient in 
a sequential environment. Consequently, although 
concurrent access to some of these data structures 
may be difficult, they could prove effective in reduc- 
ing execution time, even in a parallel environment. 

In Cannon and Hoffman (1990; see also Cannon 
1988), a shared-memory system is simulated on a net- 
work of eight DEC VAX stations by using operating 
system functions. The algorithm is designed to solve 
large-scale 0-1 ILPP by a simplex-based strong cutting 
plane approach (also called branch and cut). Since the 
bounding procedure requires significant computing 
time, but also provides sharp bounds thus generating 
few subproblems for most instances, a direct adaptation 
of a sequential approach would not utilize the comput- 
ing resources efficiently, particularly at the early stages 
of the execution. The authors thus implement a parallel 
starting phase that generates 32 subproblems, instead of 
only one, to initialize the work pool (managed as a 
shared file). They also implement mechanisms to 
"pause" the treatment of a subproblem when it appears 
that it may not lead to an optimal solution, and to 
" resume" processing on it at a later time. Experimental 
results are reported on seven instances. For one of 
these instances, the sequential algorithm using the par- 
allel starting phase is shown to be more efficient than 

the traditional sequential algorithm that begins execu- 
tion by treating the original problem. 

Trienekens (1986, 1989b) implements a best-first 
master-slave ASP algorithm on a distributed network 
of heterogeneous computers. The master manages the 
work pool and sends a subproblem to a slave as soon 
as one becomes idle. Each slave receives a subproblem 
from the master, performs the branching operation, and 
sends back the newly generated subproblems, after 
evaluating them. Experiments are reported on several 
instances of the TSP with up to six processors. Results 
of simulations of this algorithm are also given by de 
Bruin, Rinnoy Kan and Trienekens (1988). A similar 
approach is implemented on a 64-processor NCUBE/6 
hypercube multicomputer by Abdelrahman and Mudge 
(1988; see also Abdelrahman 1988) to solve the 0-1 
ILPP. The authors observe that the speedup is limited 
by two main factors: the communication overhead, 
which increases with the size of the cube, and a poor 
workload balancing, because processors nearer to the 
master receive more subproblems than those farther 
away. The algorithm is also shown to be inferior to an 
AMP approach. Luling and Monien (1989) report ex- 
periments with a similar algorithm implemented on a 
network of 64 transputers connected by a tree topology. 
They solve many instances of the VCP and report 
nearly linear speedups. This is in contrast with one of 
the conclusion of Kumar, Ramesh and Nageshwara 
Rao (1988), who remark that an ASP approach may not 
be appropriate for solving the VCP. This apparent con- 
tradiction is easy to explain by the fact that Luling and 
Monien show results for instances with 150 nodes, 
while Kumar, Ramesh and Nageshwara Rao report 
experiments on graphs with between 50 and 80 nodes. 

McKeown et al. present extensive results of an 
ASP algorithm, similar to their SSP approach, partic- 
ularly in the way it manages the single work pool. The 
algorithm was tested on a network of up to 32 trans- 
puters, by solving several problems including instances 
of the Steiner tree problem, the TSP, and the Chinese 
postman problem. For the first two problems, the 
bounding operation is nontrivial, particularly for 
the TSP, and the algorithm shows near-linear speedups 
for reasonably large instances. For the last problem, 
however, the bounding operation is rapidly performed 
and poor speedups are observed. When compared with 
an AMP approach, the algorithm is shown to be com- 
petitive when solving the TSP, but is completely out- 
performed when solving the Chinese postman problem. 

Eckstein (1994b, c) implements an ASP algorithm 
on the CM-5, an asynchronous message-passing sys- 
tem. The code bears some resemblance to commer- 
cial sequential packages for solving general mixed 
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integer programming problems. The global work pool 
is managed in a similar way as in McKeown et al., 
where the master process knows only the priority of 
each subproblem, and the processor and memory ad- 
dress of the remaining information. This distributed- 
memory scheme leads to frequent asynchronous 
communications between slaves and makes heavy 
use of the speed and general-purpose topology of the 
CM-5 architecture. Experiments on several real- 
world data instances with up to 128 processors show 
near-linear speedups for many hard problems, or run 
times reduced to the order of seconds for easier prob- 
lems. Preliminary results obtained with an AMP im- 
plementation are also given and demonstrate the 
superiority of the ASP approach on most instances. 

Pekny and Miller (1990; see also Pekny 1989, Miller 
and Pekny 1989, Pekny and Miller 1990, Balas et al. 
1991, Kudva and Pekny 1993) propose an algorithm 
that differs from the basic model described at the 
beginning of this section. The global work pool is here 
implemented by using two lists: a list of generated 
s-ubproblems not yet evaluated nor examined, and a 
list of evaluated subproblems not yet examined. A 
process looking for work will give priority to uneval- 
uated subproblems. This scheme minimizes memory 
requirements, and also permits early identification of 
a good upper bound, because an efficient upper 
bounding procedure is called when evaluating every 
subproblem. Experiments are reported on a 
10-processor BBN Butterfly system for solving the 
asymmetric TSP. Instead of focusing on the speed-up 
performance of their algorithm, the authors empha- 
size solving notably difficult very large instances that 
could not be solved previously in a reasonable 
amount of time by using traditional BB algorithms in 
a sequential environment. They solve randomly gen- 
erated instances of up to 10,000 cities (one instance of 
this size being solved in about twenty minutes), and 
notably difficult instances of up to 3,000 cities that are 
designed to confound neighborhood search heuristics. 

3.3.3. Synchronous Multiple Pool Algorithms 

Very few algorithms of this type have been imple- 
mented. Pardalos and Rodgers (1989, 1990; see also 
Rodgers 1989) propose a collegial algorithm where 
processes synchronize after each has performed 
MAXV iterations, or has emptied its work pool. Dur- 
ing the computation phase, the processes execute a 
depth-first procedure using the subproblems in their 
pool. During the communication phase, the processes 
first exchange their status, "free" if the associated 
work pool is empty, "busy" otherwise; then, when a 
"busy" process identifies a "free" one, a subproblem 

exchange is attempted. The algorithm is used to solve 
0-1 unconstrained quadratic problems, and is imple- 
mented on two shared-memory systems, the four- 
processor Cray X-MP/48 and the six-processor IBM 
3090-600E, and two message-passing hypercubes, a 
32-processor iPSC/1 and a 16-processor iPSC/2. The 
authors experimentally observe that many synchro- 
nizations occur without any exchange of subprob- 
lems, and modify the algorithm to define a 
nonpreemptive version. When a process empties its 
work pool, it asks the other processes for a synchro- 
nization phase; processes enter in a synchronization 
phase only if they have performed at least MAXV 
iterations since the last synchronization phase, or if 
they have emptied their work pool. Contrary to the 
original version, the nonpreemptive version is not' 
strictly synchronous, because processes may follow 
different paths, if the algorithm is not run under the 
same conditions for two consecutive executions. 

Pargas and Wooster (1988) propose another loosely 
synchronous collegial algorithm for solving a job 
scheduling problem. These authors implement an ini- 
tial work allocation strategy in which all processes 
build the same tree, and subsequently split tasks by 
allocating themselves some subproblems when their 
number becomes sufficiently large. Each process then 
performs its own depth-first procedure on the sub- 
problems assigned during the initial phase. Processes 
synchronize at regular intervals to exchange bounds, 
and also for load balancing purposes. During the com- 
munication phase, if a process has no more units of 
work, it may take one of the subproblems initially 
allocated to another process. This scheme does not 
require any explicit exchange of subproblems, be- 
cause the initial tree is accessible in the local memory 
of each process. The implementation of the algorithm 
on a 16-transputer FPS T-20 architecture must be 
termed loosely synchronous, because the communi- 
cation and computation procedures are executed as 
concurrent processes on each transputer. Conse- 
quently, it is possible that two consecutive runs will 
not result in the same computations. 

Laursen (1993b; see also Laursen 1991, 1993a) pre- 
sents an SMP algorithm where processes (one per 
processor) not only exchange bounds and subprob- 
lems, but also information about their local times in 
order to minimize loss due to synchronization. At 
each step, every process communicates with a differ- 
ent neighbor (an interconnection network topology 
formed of perfect edge-disjoint matchings is assumed) 
and adjusts its local time to be the average of the two 
local times. In addition, two protocols for exchanging 
subproblems are presented. Both aim at equalizing 
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the workloads (measured as the number of subprob- 
lems in the local pool) of each pair of communicating 
processes. In one protocol, the heaviest process 
sends subproblems to the other without any further 
restrictions, while in the second protocol, exchange 
of subproblems occurs only when one of the pro- 
cesses has less than two subproblems in its pool. 
Experiments in solving many instances of the graph 
partitioning problem, the weighted VCP and the QAP 
on a network of 17 transputers are presented. They 
show that the two protocols are equally effective, but 
the second is to be preferred because it minimizes the 
amount of communication. 

3.3.4. Asynchronous Multiple Pool Algorithms 

In this section, we consider only AMP algorithms 
with a fixed number of processes (see Jansen and 
Sijstermans, for an example of an algorithm with a 
variable number of processes). Among the three main 
organization schemes for the location of work pools 
(subsection 2.2), the collegial approach has received 
much attention. However, a mixed organization ap- 
pears to be an attractive alternative, particularly 
when the global work pool is used to share informa- 
tion among processes to speed up the search for an 
optimal solution, as verified by Kumar, Ramesh and 
Nageshwara Rao. The authors present a dynamic al- 
location strategy without request that is suited for 
implementation on shared-memory systems. In this 
strategy, there is a shared-memory location, called a 
blackboard, through which subproblems are ex- 
changed among processes. After selecting a subprob- 
lem in its local work pool by using a best-first 
criterion, a process performs the branching operation 
only if the lower bound of the subproblem is within a 
"tolerable" limit of the best subproblem stored in the 
blackboard. If the selected subproblem is much better 
than the best subproblem in the blackboard, the pro- 
cess transfers some of its good subproblems to the 
blackboard. If the selected subproblem is much worse 
than the best subproblem in the blackboard, the pro- 
cess transfers some good subproblems from the 
blackboard to its local work pool. Results of experi- 
ments with many instances of the TSP and the VCP 
on a BBN Butterfly with up to 100 processors show 
the superiority of the blackboard strategy over two 
collegial algorithms based on dynamic allocation 
strategies without request. Other mixed organization 
algorithms that use a dynamic allocation strategy are 
presented by Kindervater (1989) and Mans, Mautor 
and Roucairol (1993), while mixed organization algo- 
rithms with a static allocation strategy are proposed 
by many authors: Zariffa (1986), Mraz and Seward 

(1987), Altmann, Marsland and Breikreutz (1988), 
Pardalos and Crouse (1989), Rost and Maehle 
(1988), Li and Pardalos (1992), Laursen (1991, 
1993a, b). Very few algorithms that propose a 
grouped organization scheme were implemented: 
Gulyanitskii, Sergienko and Khodzinskii (1989), 
Schwan, Gawkowski and Blake (1988), Schwan et al. 
(1989a, b), Kawaguchi and Maeda (1990), McKeown, 
Rayward-Smith and Turpin (1991), McKeown et al. 
(1991), Rayward-Smith, Rush and McKeown (1991). 

Among collegial algorithms, we distinguish be- 
tween those that use a coordinator process for com- 
munication and load balancing purposes, and those 
that are fully distributed (all processes being 
identical). Yang and Das (1991) use a coordinator to 
implement a static allocation strategy. The coordina- 
tor executes a sequential best-first algorithm until 
there are N unexamined subproblems. These sub- 
problems are then distributed among Nprocesses, each 
performing a best-first BB procedure. In Schwan, 
Gawkowski and Blake (1988) and Schwan et al. (1989a, 
b), the initial allocation strategy is similar, but the al- 
gorithm then switches to a dynamic allocation policy on 
request. When a process empties its list of unexamined 
subproblems, it sends a request to the coordinator 
which chooses a busy process and asks it to share work 
by sending the subproblem with the smallest lower 
bound in the associated work pool. The selection op- 
eration used by each process is a mixture of best-first 
and depth-first, and is shown to be more efficient than 
a pure best-first selection operation, particularly when 
the number of processes increases. Experimental 
results on an Intel IPSC/1 32-node hypercube are re- 
ported for TSP instances with up to 30 cities. 

Gendron and Crainic (1993a) present another col- 
legial algorithm that uses a coordinator to ease load 
balancing and termination detection. The initial allo- 
cation strategy consists of a synchronous procedure 
which may be seen as a distributed version of 
Mohan's SSP algorithm. At each step, p subproblems 
are created, one subproblem being assigned to each 
working process. After bounding operations are per- 
formed, the subproblem with the smallest lower 
bound among all evaluated subproblems is deter- 
mined in a distributed fashion. Branching is per- 
formed on this subproblem and another step is 
executed unless the problem is solved or a given 
maximum number of steps is attained. The initial 
phase is typically run for a small number of steps, and 
the algorithm then switches to a completely asynchro- 
nous phase, where each working process performs its 
own depth-first search of a subtree. During this phase, 
when a process runs out of work, it sends a request to 
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the coordinator, which uses a round robin strategy to 
identify a granting process. The coordinator also pe- 
riodically receives from each process the number of 
subproblems stored in their local memory. This in- 
formation is used to eliminate as possible granting 
processes those that have insufficient workloads. The 
authors report on the results of experiments in solving 
the multicommodity location problem with balancing 
requirements on two message-passing architectures, 
a network of 16 transputers and a distributed system 
of five workstations, and show, in particular, that the 
initial phase eases load balancing. 

In all fully distributed collegial algorithms proposed 
in the literature, a dynamic work allocation strategy is 
used. According to our classification, we distinguish 
between algorithms that use a strategy on request, 
without request, or a combined strategy. 

Finkel and Manber (1987) propose a distributed 
implementation of backtracking, which may be used 
for depth-first BB algorithms. Each process performs 
its own backtracking procedure. When it runs out of 
work, it sends a request to another process. This pro- 
cess may be selected randomly, or by using a cyclic 
order (assuming there are p processes): Initially, 
each process i (1 < i S p) requests work from its 
successor, processj = (i modp) + 1. If processj cannot 
grant the request, it forwards it to its own successor. 
When the request is granted, the successor of process 
i becomes the successor of the process that granted the 
request. In a variation of this strategy, each process 
sending a request to its successor does not wait until the 
request is granted. Instead, after a given amount of 
time, it sends a request to another process. Strategies 
are also tested with regard to the number of subprob- 
lems to transfer, and how to select them. The authors 
report preliminary results for the TSP (and other back- 
tracking applications) on a network of 20 VAX-11/750 
computers connected by a ring topology. 

Nageshwara Rao and Kumar (1987) present a par- 
allel depth-first algorithm, which may be used to im- 
plement BB algorithms, and that is similar in many 
aspects to that of Finkel and Manber. Initially, one 
process starts a depth-first procedure using the orig- 
inal problem. When a process has an empty work 
pool, it sends a request to another process, the choice 
of this process being architecture-dependent (it is as- 
sumed that one process is running per processor). 
When a process receives a request, it sends about half 
of all the nodes that are above a certain "cutoff" 
depth (to avoid sending subproblems that can be 
solved rapidly). The algorithm was implemented 
on two shared-memory systems, the 30-processor 
Sequent Balance and the 120-processor BBN 

Butterfly, and on a 128-node hypercube message- 
passing iPSC architecture, which was also used to 
simulate the behavior of 1- and 2-ring topologies 
(Kumar, Nageshwara Rao and Ramesh 1988). The 
only problem tested was the 15-puzzle problem which 
is often used to test the effectiveness of search meth- 
ods that arise in artificial intelligence. Kumar and 
Nageshwara Rao (1987) analyze theoretically the ef- 
ficiency of this general work allocation strategy as a 
function of the architecture being used, and evaluate 
how the size of the problem, defined as the total 
number of generated subproblems (assumed to be 
constant), should grow to maintain a given efficiency 
when the number of processes is increased. This is 
called the isoefficiency measure. The original analysis 
was subsequently expanded (Kumar and Nageshwara 
Rao 1989, 1990, Grama, Kumar and Nageshwara Rao 
1991, Kumar, Grama and Nageshwara Rao 1991), and 
the algorithm was tested on many architectures and for 
other (not necessarily optimization) problems: The 
test pattern generation problem on a 128-processor 
Symult s2010 (a 2-D mesh topology) and on a network 
of 4 Sun workstations (Arvindam et al. 1991); the 
floorplan optimization problem in VLSI circuits on a 
1024-node Ncube/10, a 128-processor Symult, and on 
a network of 16 Sun workstations (Arvindam, Kumar 
and Nageshwara Rao 1989); the tautology verification 
problem on the Ncube/2 and the Ncube/10 (Arvindam, 
Kumar and Nageshwara Rao 1990, Grama, Kumar 
and Nageshwara Rao 1991, Kumar, Grama and 
Nageshwara Rao 1991). This algorithmic framework 
was also used as a basis for studying the average 
speedup that can be obtained, and, in particular, the 
occurrence of superlinear speedups (Nageshwara Rao 
and Kumar 1988c, 1990). Abdelrahman and Mudge 
(1988) propose a collegial algorithm similar to that of 
Nageshwara Rao and Kumar, except that each pro- 
cess runs a best-first algorithm. It was tested on a 
64-processor NCUBE/6 to solve 0-1 ILPP. 

Vornberger (1986; see also Monien and Vornberger 
1987) presents a distributed collegial algorithm imple- 
mented on a ring of sixteen Intel 8088 processors. The 
initial allocation strategy has each process building 
the same tree until p unexamined subproblems are 
available. Each process then selects one subproblem 
and starts its own best-first procedure. When its work 
pool becomes empty, a process sends a request to its 
left neighbor in the ring (one process being run per 
processor), which, if its work pool contains "reason- 
able" subproblems, gives subproblems to its right 
neighbor. A process also probes its neighbor at reg- 
ular intervals, by sending the value of its best lower 
bound. If the neighbor finds that its own lower bound 
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is much better, it shares a part of its work pool. Other 
collegial distributed algorithms that use an allocation 
strategy on request are given by Ma, Tsung and Ma 
(1988) and Mans (1992b). 

Quinn (1987, 1990) presents several allocation strat- 
egies without request for a distributed collegial best- 
first algorithm implemented on a hypercube topology. 
Initially, one process has the original problem in its 
work pool. At every iteration (which consists of a 
branching operation on one subproblem and bounding 
operations on the newly generated subproblems), each 
process sends to one of its neighbors one subproblem 
from its work pool according to a given criterion. Four 
criteria are proposed: Any one of the newly generated 
subproblems; the newly generated subproblem with 
the smallest lower bound; the subproblem with the 
second smallest lower bound among all subproblems in 
the work pool; the subproblem with the smallest lower 
bound among all subproblems in the work pool. The 
neighbor to which process j (0 ] j < 2') sends a sub- 
problem at iteration i is obtained by inverting bit (i mod 
d) ofj. The four strategies were tested on an NCUBE/7 
64-node hypercube with ten 30-vertex instances of the 
TSP. The third and fourth strategies prove to be best, 
because they tend to distribute evenly the amount of 
useful work performed by all processes. 

Several allocation strategies without request are 
proposed by Troya and Ortega (1988, 1989a, b). In 
one of them, processes send each of their newly gen- 
erated subproblems to a process randomly selected 
(see also Felten 1988 who uses the same strategy, and 
Karp and Zhang 1988, and Ranade 1990 who propose 
theoretical analyses of this load balancing approach). 
In other strategies, each newly generated subproblem 
is given a value j E {0, 1}; a dichotomous branching 
scheme is assumed. One strategy then assigns sub- 
problemj to the same process at every iteration, while 
another ensures, by a cyclical allocation scheme, that 
subproblem j will not be transferred to the same pro- 
cess at every iteration. Simulations show that the 
random strategy is inferior to the others. 

Another type of strategy without request uses in- 
formation obtained from other processes to decide on 
how to share work units. Vornberger (1987) intro- 
duces an allocation scheme in which a process i gives 
its best subproblem (a best-first strategy being used) 
to each neighbor j at every L iterations, where L 
depends on the value of the smallest lower bound 
most recently communicated by j. If the best sub- 
problem in the work pool of process i has a smaller 
value than the one in the work pool of process j, L is 
set to a "low" value, otherwise it is set to a "high" 
value. Experimental results with ten instances of the 

VCP on a network of 32 transputers are presented. 
Another strategy without request that uses informa- 
tion from other processes to take decisions is pre- 
sented by Anderson and Chen (1987). 

Luling and Monien (1989) were among the first to 
propose a combined strategy. Each process starts 
initially with one subproblem and performs a best-first 
procedure using the subproblems in its work pool. A 
"quality" measure associated with each work pool, 
called weight, is used to govern the sharing of work 
units among processes. The load balancing strategy 
makes use of several parameters that are assigned val- 
ues at the beginning and remain fixed during the whole 
computation. Experiments with five instances of the 
VCP are performed on a network of 60 transputers and 
on a ring of 32 transputers. The number of generated 
subproblems in the work pool is used to measure the 
weight. Kroger and Vornberger (1990) use the same 
load-balancing strategy to solve the two-dimensional 
cutting stock problem on a network of 32 transputers. 
However, the weight is measured differently. Assume 
that Q1, . . , Qn are the subproblems in the work pool 
of a given process i and best_Z is the best upper bound 
known by this process. The weight is then given by w, 
= = (bestZ - Z'(Qi))2. The same weight measure is 
also used by Luling and Monien (1992) in a subsequent 
paper. The authors add some ingredients to their basic 
strategy, but their main contribution is to introduce a 
controller process that modifies the values of the pa- 
rameters during execution. They give results on two 
instances of the VCP and three instances of the 
weighted VCP on a network of 256 transputers. It re- 
sults that this weight measure makes sense only when 
the lower bounds are distributed in large intervals, oth- 
erwise the number of generated subproblems appears 
to be more adequate. 

Clausen and Traff (1988, 1991) present two distrib- 
uted collegial algorithms for solving the graph parti- 
tioning problem. Two different bounding operations 
are used, one being qualified as "easy" and generating 
large trees, and the other being qualified as "tight" 
and generating small trees. Results of experiments on 
a 32-node iPSC hypercube reveal that a combined load 
balancing technique is more efficient than a strategy 
on request. They also show that the easy bounding 
operation performs better in a parallel environment 
than the tight bounding operation. McKeown et al. 
propose another combined work allocation strategy. 
A process exhausting its work pool sends a request to 
a neighboring process. When a process receives a 
request, it sends several subproblems to the request- 
ing process if it has (or will soon have) subproblems 
in its work pool. Otherwise, it sends a message 
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indicating that it is idle. In addition to this basic 
strategy, each process sends its best subproblem to 
a neighboring process (it cycles between e-ach of its 
neighbors) every count iterations. Results of experi- 
ments with the TSP and the Chinese postman problem 
on a network of up to 32 transputers show near-linear 
speedups, when the parameter count is adjusted 
adequately. 

4. CONCLUSION 

We have presented a state-of-the-art survey of paral- 
lel BB algorithms for solving NP-hard optimization 
problems. Our work differs in many aspects from 
previous contributions to the area. First, our survey is 
more complete and up-to-date. Second, we have pro- 
posed a new presentation of the BB algorithm, where 
the operations are isolated without specifying any 
order for their execution. The usefulness of this ap- 
proach has been shown by stating a convergence 
theorem based on properties that hold for most exact 
sequential and parallel algorithms. Third, we have 
proposed a new classification of parallel BB algo- 
rithms which differs in many aspects from previous 
classifications proposed by Roucairol (1989) and 
Trienekens and de Bruin (1992). Roucairol considers 
asynchronous algorithms of two types: vertical and 
horizontal. Vertical algorithms correspond to the dis- 
tributed collegial algorithms of our classification, 
while horizontal algorithms correspond to the ASP 
class of algorithms. Trienekens and de Bruin classify 
algorithms by using the notion of knowledge base, 
which is an entity that may contain, among other 
things, generated subproblems (examined or not), up- 
per bounds, and feasible solutions found by the algo- 
rithm. The basic difference between this notion and 
our notion of work pool, is that a work pool contains 
only generated subproblems that are awaiting some 
treatment, while a knowledge base may contain any 
knowledge generated by the algorithm. 

With regard to the design of BB algorithms for 
solving a given problem on particular parallel archi- 
tectures, we can draw the following conclusions: 

* Implementations on massively parallel fine-grained 
SIMD machines are appropriate only for problems 
with trivial bounding operations performed in con- 
stant time. 

* Synchronization appears unnecessary in most 
cases. 

* ASP algorithms are appropriate only for problems 
with a nontrivial bounding operation, and parallel 
architectures having a relatively small number of 
processors. 

* Implementations of ASP algorithms on shared- 
memory architectures should benefit from the work 
of Nageshwara Rao and Kumar (1988a, b) and Le 
Cun, Mans and Roucairol (1993) on concurrent pri- 
ority queue data structures, and of Pekny and Miller 
(1992) on two-list implementations. 

* In AMP algorithms, dynamic combined strategies 
appear most promising for allocating work units 
among processes. In particular, the notion of 
weight of a work pool, introduced by Luling and 
Monien (1989), seems particularly useful. 

* In AMP algorithms, a mixed organization scheme 
for the location of work pools appears to be an 
attractive alternative to a collegial approach, par- 
ticularly if the global work pool is used to improve 
the search for an optimal solution. 

As possible extensions to the present study, we 
suggest the following: 

* Study the impact of parallelism of type 3, particu- 
larly along the lines suggested by Miller and Pekny 
(1993), the idea being to use parallelism to diversify 
the search. 

* Study algorithmic schemes that combine the three 
types of parallelism. 

* Perform comparative studies of single pool and 
multiple pool algorithms for several problems (see, 
in particular, the pioneering work of McKeown et 
al. on the implementation of kernels on transputer 
networks). 

* Perform comparative studies of several initial work 
allocation strategies. 

* Implement new schemes for the dynamic allocation 
of work units, and perform comparative studies of 
them. 
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